Q		LU110										•	
R	Reg. No:]		
	SIDDHA	ARTH IN	STITU	TE O	F EN	GINE	ERIN	[G & '	TECH	INOL	OGY:: PUT	TUR	
	(AUTONOMOUS)												
B.Tech III Year I Semester Supplementary Examinations August-2022													
	TRANSPORTATION ENGINEERING												
_					(Civ	il Eng	ineeri	ng)					
Т	ime: 3 hours										Max	x. Mar	ks: 60
			(Ans	swer al	l Five	e Units UNI	5 5 x 1 T-I	2 = 6	0 Mar	ks)			
1	Write the bas two terminal s	sic requir stations.	ements	and fa	actors	contr	olling	for i	deal a	lignmo	ent between	L1	12M
•						Ol	R		D 1.	1.			
2	a List the Fa	ctors affe FV theor	cting O	SD. Ex	plain	Lag c	listanc	e and	Braku	ng dis	tance.	L2 I 1	6M 6M
			у.			UNI	Г-II					LI	UIVI
3	The results of Find the time	f a speed mean spe	study is ed and	s giver space 1	n in tl nean	he for speed	m of a	ı frequ	uency	distril	oution table.	L3	12M
		No.	spee	d ran	ge	ave	rage	spee	$d(v_i)$)			
		1		2-5	_		3	3.5					
		2	9	6-9			7	7.5					
		3	1	0-13			1	1.5					
		4	1	4-17			1	5.5					
					-	O	R						
4	Discuss about	t various	Enginee	ring m	leasui	res tha	t can l	nelp in	n redu	cing ti	me accident	L2	12M
	Tate.					UNIT	'-III						
5	a What are w	varping st	resses?	List ou	it the	stress	es in r	igid p	aveme	nt.		L1	6M
	b List out the	e types of	paveme	ent bas	ed on	struct	tural b	ehavio	our.			L1	6M
6	Δ cement co	ncrete na	vement	has a	thick	Ol	R of 26.	cm ar	nd land	- widt	h of 35 m	13	12M
U	Design the tie	bars Alo	ng the l	ongitu	dinal	joints	using	the da	ita giv	en bel	ow:	LJ	12111
	Allowable wo	orking stre	ess in ste	eel tie	bars,	$\mathbf{S}\mathbf{s} = 1$	250 kg	g/cm ²	U				
	Unit weight o	f CC, W	= 2400]	kg/cm ³		1.0							
	Allowable ten	iue of fric	cuon coe s in defe	errned	lt, I = tie ba	1.2 r Se -	- 2000	ka/or	m^2				
	Allowable box	nd stress	in defor	med ba	ars, S	b = 24	6 kg/	cm^2	11				
						UNIT	Γ -ΙV						
7	a What are the and support	he function ted rail ion	ons of sl pints	leepers	? Bri	ng out	t the d	ifferei	nces b	etwee	n suspended	L2	6M
	b Draw a typ	vical cross	s section	of per	rmane	ent wa	y and	show	variou	is com	ponents.	L2	6M

R19

6M

6M

8 a Explain for coning of wheels.L1b What are the requirements of a ideal permanent way?L1

OR

UNIT-V

R19

		UNII-V		
9	a	Calculate the maximum permissible speed on a curve of high speed for the	L3	6M
		following data on a M.G track. Degree of curve 0.9 ⁰ , amount of super elevation		
		8.0 cm, length of transition curve 135 m, maximum speed of the section likely		
		sanction speed = 120 kmph.		
	b	What is cant deficiency? Discuss briefly about the limits of cant deficiency.	L1	6M
		OR		
10	a	If a ruling gradient of 1 in 250 is fixed on a B.G section and a horizontal curve of	L1	6M
		4° is also to be introduced over it. What should be the actual ruling gradient?		
	b	Explain the classification of gradient in railways.	L1	6M

*** END ***